
Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds
with a Multifunctional Wound Dressing
Rahimeh B. Atashgah, Amir Ghasemi, Mohammad Raoufi,* Mohammad-Amin Abdollahifar,
Steven Zanganeh, Hossein Nejadnik, Alieh Abdollahi, Shahriar Sharifi, Baltazar Lea, Miguel Cuerva,
Mehdi Akbarzadeh, Carmen Alvarez-Lorenzo, Seyed Nasser Ostad, Andrea S. Theus, Doris L. LaRock,
Christopher N. LaRock, Vahid Serpooshan, Rouzbeh Sarrafi, Ki-Bum Lee, Hojatollah Vali,
Holger Schönherr, Lisa Gould, Pablo Taboada, and Morteza Mahmoudi*

Cite This: Mol. Pharmaceutics 2021, 18, 3171−3180 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Current treatment of chronic wounds has been critically limited by various factors, including bacterial infection,
biofilm formation, impaired angiogenesis, and prolonged inflammation. Addressing these challenges, we developed a multifunctional
wound dressing-based three-pronged approach for accelerating wound healing. The multifunctional wound dressing, composed of
nanofibers, functional nanoparticles, natural biopolymers, and selected protein and peptide, can target multiple endogenous repair
mechanisms and represents a promising alternative to current wound healing products.
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Although chronic wounds have different types, they
generally exhibit failure to recover anatomic and func-

tional integrity due to infection, unresolved inflammation, and
severe impairment of healing processes, including angiogenesis,
epithelial migration, and cell proliferation.1−4 The central
challenge of the current solutions in healing chronic wounds is
that majority of them addresses one of the predetermined
issues of the complex wound environment.4 Therefore, the
development of a multifunctional patch that addresses some of
these issues at the same time is of a significant clinical interest.
To achieve a multidisciplinary view on the wound healing
ecosystem and identify unmet clinical needs, we interviewed
over 100 wound healing experts (e.g., clinicians, dressing
developers, and directors of wound healing centers) through
the I-Corps program funded by the National Science
Foundation.5

Clinical success in curing chronic wounds is limited in large
part due to a lack of understanding of the mechanical,
biochemical, immunological, and repair processes involved in
skin regeneration as well as their interplay.6−11 Numerous
types of wound dressings have been proposed and developed
to treat chronic wounds and promote healing, with some
having positive effects. However, the limitations of the more
successful wound dressings, such as weak adhesiveness and
inadequate mechanical properties, e.g., low flexibility, extensi-
bility, and elasticity, require the application of secondary
dressings, which in turn increases the risk of infection.12−14

Notably, most of these dressings are designed to restore only
one of the many impaired healing processes and hence achieve
only limited success.9,15−18 The use of natural tissues (e.g.,
human cadaver skin, placental membrane, porcine intestinal
submucosa, and neonatal foreskin) can address the afore-

mentioned issues in healing chronic wounds. However, owing
to the requirement for decellularization, natural tissue
harvesting is a prolonged and expensive process incapable of
further cost reduction due to the scarcity of ingredients and the
in-depth testing of donor skin followed by chemical processing
and storage. Furthermore, tissue-based products comprising
live cells have strict shipping and application requirements.
The temperature of the product has to be carefully controlled
in transit (dry ice), and the patient must receive the graft
within hours after the product arrives at wound centers.
Furthermore, stringent wound bed preparation requirements
make them inappropriate in all but the hospital setting. There
is, therefore, a large and growing need for the development of
effective chronic wound treatments that is affordable, efficient,
and easy to use.19

In this paper, we report on the development of an easy next-
generation “composite patch” dressing for chronic wounds that
(1) provides an environment with suitable physicomechanical
properties, (2) delivers superparamagnetic iron oxide nano-
particles (SPIONs) to minimize and counteract microbial
biofilm formation, which can otherwise lead to infection and
prolonged inflammation, (3) delivers follistatin like-1 (FSTL-
1) proteins that accelerate healing by the induction of
angiogenesis and cell proliferation and reducing the chance
of overgrowth of skin cells, and (4) releases pro-resolving
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inflammatory mediators (i.e., AC2-26) to tamp down the
unbalanced inflammation of the wound site20−23 (see Figure 1
for details).
Bacterial infections associated with biofilm formation can

reduce the efficacy of the host response and considerably delay
wound healing. Chitosan in our patch is well-known for its
bacteriostatic properties due to interactions between charged
groups in the chitosan backbone and bacterial wall
constituents.24 To further enhance the antimicrobial activity,
our patches were laden with ferumoxytol (as FDA-approved
SPIONs). Our studies show these SPIONs possess two unique
functions: (1) an intrinsic antibacterial activity25,26 and (2) the
ability to shift macrophage polarization from M2 to M1.27,28

Macrophages in chronic wounds exhibit reduced capacity to
phagocytose dead neutrophils and reduced apoptotic clear-
ance.29−31 Shifting the polarization to M1 can help to restore
the desired macrophage capacity.
Chronic wounds are typically characterized by inadequate

angiogenesis and impaired extracellular matrix (ECM)
production. We recently found that FSTL-1 induces
proliferation of adult cardiomyocytes following myocardial
infarction to help regenerate cardiac tissue.32 FSTL-1 also
promotes keratinocyte migration during re-epithelization in
healing skin.33 FSTL-1 is very low/undetectable in healthy

unwounded skin but is abundant in wounded skin, reflecting its
critical role in wound healing. Remarkably, FSTL-1 is not
expressed in chronic nonhealing ulcer wounds in diabetics.34,35

Another reason to incorporate FSTL-1 into our patch is that
FSTL-1 can bind activin proteins to antagonize their adverse
effects (e.g., skin tumorigenesis and scar formation) during
wound healing.36−40 We homogeneously incorporate FSTL-1
into the patch using nanoextrusion so there can be sustained
release of FSTL-1, during the patch degradation process, into
the wound bed to induce angiogenesis, promote keratinocyte
migration and proliferation, and increase healing.

Figure 1. Mechanism of orchestrated action of the next-generation composite patch dressing for healing chronic wounds. The patch contains
nanofibers composed of collagen, chondroitin sulfate, hyaluronic acid, elastin, and chitosan to closely mimic the flexibility, stiffness, and
adhesiveness of human skin. The nanofibrils also contain FSTL-1 protein and AC2-26 peptides. The sustained release of FSTL-1 promotes
angiogenesis as well as keratinocyte migration and proliferation. SPIONs, which are physically attached to the patch surface, induce macrophages to
shift from a M2 to a M1 phenotype, and promote biofilm removal by phagocytosis. As the patch degrades, Ac2-26 will be released to help terminate
prolonged inflammation, promote fibroblast migration, and reduce scarring.

Table 1. Composition of the Nanofibrous Patch

protein/polymer buffera
concentration
(mg/mL)

portion
(%)

chitosan acetic acid
(1%)/PBS

3.5 80

collagen PBS 0.3 5
chondroitin
sulfate

PBS 0.5 5

elastin PBS 0.3 5
hyaluronic acid PBS 0.5 5
aPBS: phosphate buffered saline
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Besides FSTL1, we added Ac2-26, a peptide derived from
the N-terminus of annexin A1 (ANAX1),41−44 as a stable pro-
resolving inflammatory mediator. Ac2-26 replicates the anti-
inflammatory maintenance of cytoskeleton and ECM, tissue

growth, apoptosis, and differentiation effects of ANAX1.45

Topically controlled release or encapsulated formulation of

Ac2-26 can stimulate fibroblast migration in vitro and in

Table 2. Composition and Properties of the Designed Patch Systems

patch composition remarks

nanofibrous
patch

Extruded nanofibrous patch composed of chitosan, collagen,
chondroitin sulfate, elastin, and hyaluronic acid

Providing a suitable environment in which cells can easily proliferate, rapidly
multiply, and form new blood vessels

FSTL-1 patch Extruded nanofibrous patch composed of chitosan, collagen,
chondroitin sulfate, elastin, hyaluronic acid, and follistatin like-1

Providing a suitable environment in which cells can easily proliferate, rapidly
multiply, and form new blood vessels; accelerating angiogenesis process

AC2-Z6 patch Extruded nanofibrous patch composed of chitosan, collagen,
chondroitin sulfate, elastin, hyaluronic acid, and pro-resolving AC2-
26 peptide

Providing a suitable environment in which cells can easily proliferate, rapidly
multiply and form new blood vessels; minimizing unbalanced and prolonged
inflammation

SPION patch Incubated superparamagnetic iron oxide nanoparticles with the
extruded nanofibrous patch composed of chitosan, collagen,
chondroitin sulfate, elastin, and hyaluronic acid

Providing a suitable environment in which cells can easily proliferate, rapidly
multiply and form new blood vessels; preventing and reducing existing bacterial
infection

composite
patch

Incubated superparamagnetic iron oxide nanoparticles with the
extruded nanofibrous patch composed of chitosan, collagen,
chondroitin sulfate, elastin, hyaluronic acid, follistatin like-1, and pro-
resolving AC2-26 peptide

Providing a suitable environment in which cells can easily proliferate, rapidly
multiply and form new blood vessels; preventing and reducing existing bacterial
infection; minimizing unbalanced and prolonged inflammation; and accelerating
angiogenesis process

Figure 2. SPIONs activate macrophages and in the presence of macrophages reduce S. aureus biofilms drastically. (A) Treatment of bone marrow-
derived macrophages with bare and corona coated ferumoxytol (with various concentrations of human and fetal bovine serum) shows upregulation
of proinflammatory genes (INOS, Il-12p40, and CD86) and a downregulation of anti-inflammatory genes (Arg1, Il-10, and CD206) over 24 h, as
measured by quantitative RT-PCR. (B) Indicated cytokines in BMDM/ferumoxytol mixed supernatants as assessed by Luminex multiplex cytokine
analysis (right). (C) (i) Representative flow cytometry assay for bone marrow-derived macrophages polarization treated with ferumoxytol in
different human and fetal bovine serum concentrations. (ii) CD80+CD206− (M1 macrophages) were significantly increased in the presence of
10% and 50% FBS and human sera in the culture media. (iii) CD206+CD80− (M2 macrophages) were significantly decreased in serum-free
culture media. (D−E) GFP: labeled S. aureus were cocultured with human THP-1 macrophages for 24 h in 24-well tissue culture plates, using
DMEM containing 0, 60, and 200 μg/mL of pristine SPIONs. Heat map images showing relative GFP signal intensities after the 24 h culture and
(D) were quantified using ImageJ (E).
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vivo.45,46 Ac2-26 significantly improves wound healing in
animal models even in the presence of high glucose.45,46

■ RESULTS AND DISCUSSION
To provide an environment with suitable physicomechanical
properties, we used a dedicated template-assisted nano-
extrusion technique (exploiting nanoporous anodic aluminum
oxide, AAO, membranes) and thereby fabricated a multifunc-
tional nanofibrous composite patch composed of a careful
selection of natural biopolymers consisting of collagen, elastin,
chitosan, chondroitin sulfate, and hyaluronic acid (Table 1).
The selection of biopolymers was based on (i) minimizing and
counteract microbial biofilm formation with chitosan that has
proven antibacterial capability,47−51 which can otherwise lead
to infection and prolonged inflammation, (ii) accelerating
healing by the induction of angiogenesis through the use of
collagen type I,52−55 and (iii) tamp down the unbalanced
inflammation of the wound site using synergist roles of
chondroitin sulfate and hyaluronic acid.52−58 We have
thoroughly evaluated the physicochemical and mechanical
properties of the resulting patches using techniques including
Fourier transform infrared (FTIR) spectroscopy, differential

scanning calorimetry (DSC), thermogravimetric analysis
(TGA), Brunauer−Emmett−Teller (BET), and scanning
electron microscopy (SEM) (Figures S1−S8 in the Supporting
Information (SI)). Through this vast combination of character-
ization approaches, we found and confirmed that the patches
possess the capacity to (1) mimic the flexibility, stiffness, and
adhesiveness of human skin, (2) provide a suitable environ-
ment for tissue regeneration, and (3) uniformly distribute a
mixture of biopolymers and therapeutic biomolecules
(although it needs further research to evaluate the degree of
uniformity), including FSTL-1 and AC2-26, to accelerate
wound healing (see Table 2 for all of the employed wound
healing patches in this study).
We validated the hypothesis that macrophage activation by

ferumoxytol may contribute to antibacterial activity in the
wound and reduce bacterial infection by modulating macro-
phage polarization (Figure 2).
As some of the chronic wounds have exudates,19 which are

fluids with various types of proteins, cytokines, and other types
of biomolecules, they may interact with the surface of
nanoparticles and create protein corona19,59,60 (i.e., a layer of
biomolecules that covers the surface of nanoparticles and affect
their interactions with biosystems61−63). As a proof-of-concept
study, we considered the role of protein corona formation in
macrophage polarization. Our systematic investigations
revealed that ferumoxytol significantly upregulates TNF-α,
iNOS, and CD86 markers, indicating polarization of macro-
phages to the proinflammatory phenotype (M1) but only in
corona coated nanoparticles (Figure 2A). By contrast, the
mRNA levels of anti-inflammatory CD206, ARG1, and IL10
markers were observed to be significantly reduced after
exposure to SPIONs without a protein corona. Similarly, the
production of proinflammatory cytokines, such as TNF-α and
Il-12p40, significantly increased in the serum-containing media,
but no significant production of anti-inflammatory cytokines,
such as IL-10, IL4, and IL13, was observed (Figure 2B). The
enhanced production of TNF-α has a beneficial effect on the
wound-healing process, as it can induce the expression of
vascular endothelial growth factor A in keratinocytes and
fibroblasts.64,65 It is noteworthy that the roles of activation and
tempering the inflammation are designed to be sequential: first,
proinflammatory effects of SPIONs help preventing bacterial
infections, and then the anti-inflammatory effects of AC2-26
reduce the prolonged inflammation. TNF-α can also enhance
the synthesis of a wide range of metalloproteinases (MMPs),
including MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, and
MT1-MMP.65−69 MMPs possess a crucial role in several stages
of the wound-healing process by facilitating cell migration and
tissue remodeling.70,71

The phenotypic heterogeneity of macrophages was also
measured by flow cytometry, using a combination of CD80
and CD206 lineage markers. All macrophages interacting with
SPIONs in serum-containing media exhibited a significant
increase in CD80+CD206− (M1) expression and a significant
decrease in CD206+CD80− (M2) expression in comparison
with control and serum-free conditions (Figure 2C). These
results indicate that the absence of serum proteins in the media
constitutively limits the SPIONs-dependent function of
macrophages. In other words, the interaction of the SPIONs
with wound exudate and drainage fluid can further promote
macrophage M1 activation, which supports bacterial removal.
To confirm the antibacterial role of the SPIONs, GFP-

labeled S. aureus were 2D cultured in concentrations of 0, 60,

Figure 3. Images of wound contraction after intervention in
noninfected diabetic rat model 4, 7, 15, and 28 days after wound
induction. (A) A diabetic wound in a rat model at determined time
points, wound induction day, 4, 7, 15, and 28 days treated with
AQUACEL Extra, nanofibrous patch, FSTL-1 patch, AC2-26, and
control group (B) Wound closure % (size of closure/entire size of
each wound) of uninfected diabetic rats.
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Figure 4. Immunohistochemical analysis of angiogenesis at the wound site. (A) Representative images of vWF staining in noninfected diabetic
groups: Control, nanofibrous patch, AQUACEL Extra, FSTL-1 patch, and Ac2-26 patch at (i, iii, v, vii, ix) 7 and (ii, iv, vi, viii, x) 15 days postwound
induction, respectively. Scale bars: 100 μm. (B) Quantitative analysis of angiogenesis and maturation of capillary vessels 7 and 15 days after wound
induction: (i) numerical density of capillary vessels, (ii) total area of vessels, (iii) stereological analysis of length density of blood vessels at the
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and 200 μg/mL of SPIONs in DMEM for 24 h in the presence
of human monocyte-derived macrophages (THP-1; Figure
2D,E). On the basis of the GFP signal analysis, a significant
reduction in S. aureus was observed when they were cultured
with 60 and 200 μg/mL of SPIONs, in comparison to the
control group (no SPIONs) (P < 0.05 and 0.0001,
respectively) (Figure 2E). Increasing SPION concentrations
from 60 to 200 μg/mL resulted in a further increase in
bacteriostatic activity (P = 0.0008).
We carefully analyzed the effect of each component (i.e.,

SPIONs, FSTL-1, or AC2−26) added to the patch (i.e., an
extruded nanofibrous patch composed of chitosan, collagen,
chondroitin sulfate, elastin, and hyaluronic acid) and probed
the resulting antibacterial properties, angiogenesis induction,
and pro-resolving inflammation properties in vivo using a
diabetic wound rat model. The study revealed the prominent
role of SPIONs, FSTL-1, and AC2−26 in removing bacterial
infection, inducing the formation of new vessels and reducing
the inflammation intensity, respectively, in the healed wound
sites (Figures S9−S18 in SI).
We also probed the therapeutic efficacy of composite

patches (i.e., nanofibrous patches containing SPIONs, FSTL-1,
and AC2-26) on both clean and bacteria inoculated wounds.
The wounds inoculated with S. aureus (5× 106 CFU/μL).
The data revealed a significantly enhanced healing efficacy of

the composite patch compared to other patches. Figure 3A
represents wound closure during one-month postintervention
using the designed nanofibrous patches, FSTL-1 patches, and
AC2-26 patches on noninfected diabetic rats in comparison
with AQUACEL Extra and control group (without any
intervention after wound excision). Digital planimetry of
noninfected diabetic wounds showed significant wound closure
after 4 weeks with all treatments. Wound closures with
nanofibrous patches, FSTL-1 patches, Ac2-26 patches,
AQUACEL Extra treated groups, and the control group 4
days postwound induction were 23 ± 4%, 54 ± 13%, 43 ±
14%, and 30 ± 12%, respectively. Wound closures at 1 week
after wounding demonstrated faster healing rates with the Ac2-
26, FSTL-1, and nanofibrous patches compared with
AQUACEL Extra and the control group (57 ± 12%, 65 ±
10%, 85 ± 1%, 52 ± 14%, 67 ± 2%, and 23 ± 1%,
respectively). Wound closure of AQUACEL Extra after 2
weeks of wound induction was significantly lower than other
groups, including the control group (57 ± 2%, P < 0.001).
Complete wound closure in all experimental groups was
observed after four weeks, and there was no significant
difference among groups after 28 days of wound excision
Figure 3B.
We found that FSTL-1 patches induced capillary formation

at the wound site significantly better than the other patches.
FSTL-1 induces neovascularization and blood vessel matura-
tion in vivo. Von Willebrand Factor (vWF) staining revealed
regenerated tissue with more blood vessels in the groups
contain FSTL-1 (Figure 4A) and composite patches (Figure

4C) compared with the other groups (Figure 4A). The
quantified density of newly formed capillary vessels two weeks
after applying the FSTL-1 patch (305 ± 156) was significantly
higher than for the Ac2-26 patches (176 ± 42, p < 0.05), the
nanofibrous patches (154 ± 55, P <0.01), and the control (103
± 94, P < 0.01) groups (Figure 4Bi). Statistical analysis of total
vessel area between the groups showed enhanced blood vessel
formation in patch-treated wounds (Figure 4Bii). In addition,
stereology assessment of new capillary vessel length and
density (Figure 4Biii) showed that capillary vessel formation
was much greater with FSTL-1 and composite patches than
with other patches. Overall, the composite patch exhibited all
benefits of each patch (e.g., angiogenesis, antibacterial, and
pro-resolving inflammation of FSTL-1, SPIONs, and AC2-26
patches respectively) simultaneously.
While these in vitro and animal study tests discussed above

are necessary and relevant tests, human trials are required to
assess the actual efficacy of the novel wound dressing. The
therapeutic wound healing capability of the nanofibrous and
composite patches was thus examined following the application
to 13 patients (Figure 5) with nonhealing chronic diabetic
wounds. These wounds had not previously healed despite the
application of state of the art standard-of-care therapy (i.e.,
appropriate debridement, treatment of infection, and applica-
tion of conventional moist dressings), and other available
approaches (i.e., the use of commercial wound-healing
products, including AQUACEL and GranuGel) (Figure 5A).
Informed consent was obtained from all participants in this
study. All required interventions during the study were carried
out by experienced medical staff. In addition, the blood glucose
levels were controlled. Patients treated with the nanofibrous
patch showed a relatively fast average healing rate of 26 ±
18%/day. Variations in healing among the patients were likely
related to their health conditions and the individual wound
shape and dimensions. However, the chronic wounds of all 13
enrolled patients healed after treatment with the patches
(Figure 5A). The wound size and complication of the patients’
disease also affected the healing rate and follow-up period for
each case. Overall, each case was followed up for at least two
months.
In another case study, a 71-year-old male with an infected

diabetic wound at the ankle (fibula) was treated with a novel
composite patch (Figure 5D). The wound surface area was
measured with digital planimetry (ImageJ software, 1.48 (v).
Figure 5E shows the 14-week-old nonhealing chronic diabetic
wound on the plantar fascia of this patient. Within 8 weeks
after implantation of the nanofibrous patch, the wound was
observed to be closed. It is noteworthy that each row
demonstrates different wounds.
In summary, we have developed a multifunctional nano-

fibrous patch with a unique capacity to promote the body’s
endogenous capacity to heal chronic wounds. Our method
relies on a composite patch that has the following vital features,
including (i) providing a suitable environment, in which cells

Figure 4. continued

wound site. (C) Representative images of vWF staining in infected diabetic groups: Control (inf), AQUACEL Ag, FSTL-1 patch, and Ac2-26 patch
at (i, iii, v, vii) 7 and (ii, iv, vi, viii) 15 days postwound induction, respectively. Scale bars, 100 μm. (D) Quantitative analysis of angiogenesis and
maturation of capillary vessels 7 and 15 days after wound induction: (i) numerical density of capillary vessels, (ii) total area of vessels, (iii)
stereological analysis of the length density of blood vessels at wound site showing the effective role of FSTL-1 on angiogenesis and vessel
development. The results are mean ± SD, * p < 0.05, **p < 0.01, ***p < 0.001. The microvessels with 10−15 μm diameter are considered capillary
vessels (a surface area about 100 μm2).
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can easily proliferate and form new blood vessels (using FSTL-
1), (ii) preventing or reducing existing bacterial infection using

SPIONs with and without protein corona, and (iii) minimizing
unbalanced and prolonged inflammation (using the Ac2-26

Figure 5. Results of the clinical study, in which patients were treated with the nanofibrous patch. (A) Table showing the characteristics of all
participants (n = 13); ulcer duration indicates the time that the patients suffered from nonhealing chronic wounds that failed to heal on their own
or with the use of available commercial products; the ulcer size was determined at the time the nanofibrous or composite (*) patch was applied.
(B,C) A 63-year-old male with diabetic wounds (i) before and after (ii) 2, (iii) 4, (iv) 8 weeks, and (v) 12 weeks of treatment with the composite
patch. (D) A 71-year-old male with a diabetic wound on the ankle (fibula) (i) before and after (ii) 7, (ii) 14, (iii) 18, (iv) 21 days, and (v) 7 weeks
of treatment with composite patch. Scale bar, 1 cm. (E) An example of the wound healing capacity of the nanofibrous patch in a 71-year-old male
with chronic diabetic wounds (i) before and after (ii) 3, (iii) 5, (iv) 7 weeks, and (v) 11 weeks of treatment initiation; Scale bar, 2 cm. The healing

rate of the wound was calculated by the following equation:
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pro-resolving inflammatory mediator). This study could
ultimately lead to the development of novel and efficient
therapeutic wound healing patches that restore the body’s
natural healing process by reducing biofilm infections and
adjusting the impaired angiogenesis and inflammation at the
wound site. As recent reports revealed the critical role of sex in
the safety and therapeutic efficacy of nanostructured
materials,72−74 further evaluations on the role of sex on the
safety and efficacy of wound dressing consisting of nanoma-
terials are essential. Overall, the patch will substantially
increase the likelihood of clinically relevant wound healing
and minimize the risk of amputation in patients with chronic
wounds.
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